

Radiance-based Neural RGB-D Reconstruction

Siyu ZHANG

Research Engineer

ZJU-SenseTime Joint Lab of 3D Vision

Contents

- Preliminary: Nerf(<u>Ne</u>ural <u>R</u>adiance <u>F</u>ields) as scene representation
- Paper sharing:
 - iMAP: Implicit Mapping and Positioning in Real-Time
 - Neural RGB-D Surface Reconstruction
- Taking a deeper look

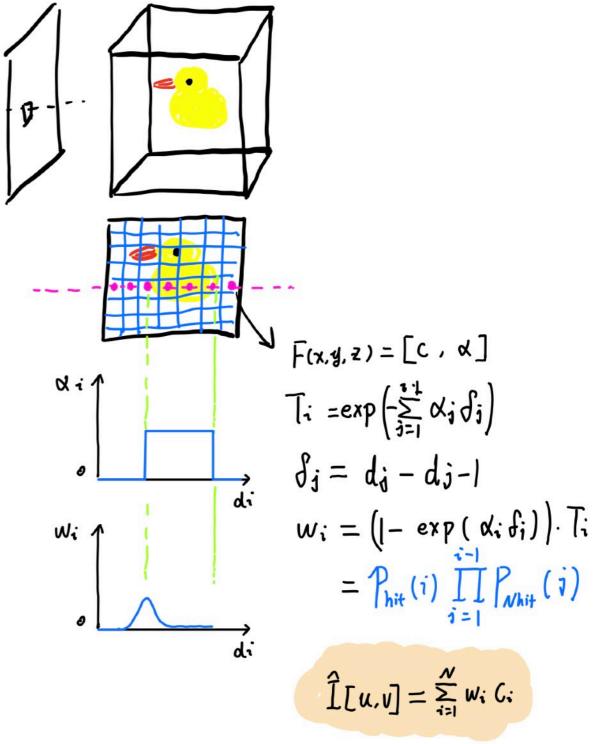
• Radiance

Definition: power per unit solid angle per projected unit area.

$$L(\mathbf{p}, \omega) \equiv \frac{\mathrm{d}^2 \Phi(\mathbf{p}, \omega)}{\mathrm{d}\omega \, \mathrm{d}A \cos \theta}$$

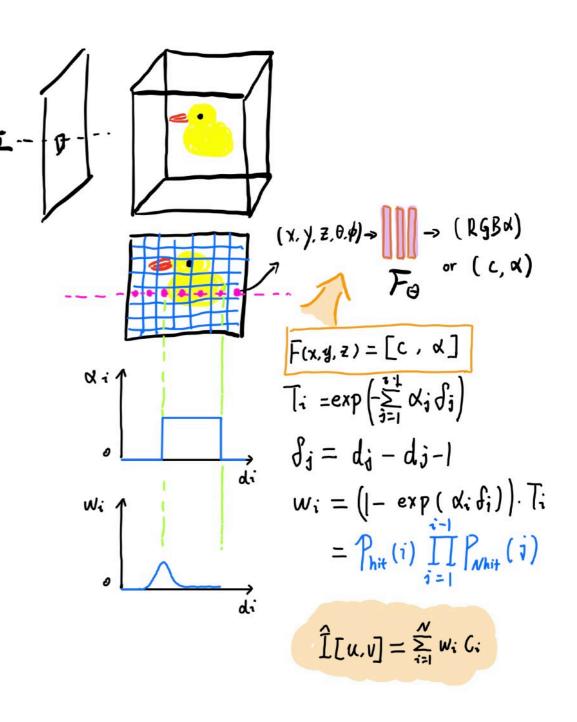
Ref: GAMES-101

- Radiance
- Radiance Field & Volume Rendering 🕰 --
 - Input camera pose and output RGB image
 - Method:
 - Sample points along the ray (given camera pose)
 - Query RGBα value for each point (given point coordinate)
 - Accumulate radiance along the ray

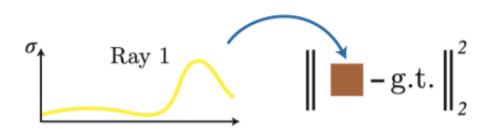


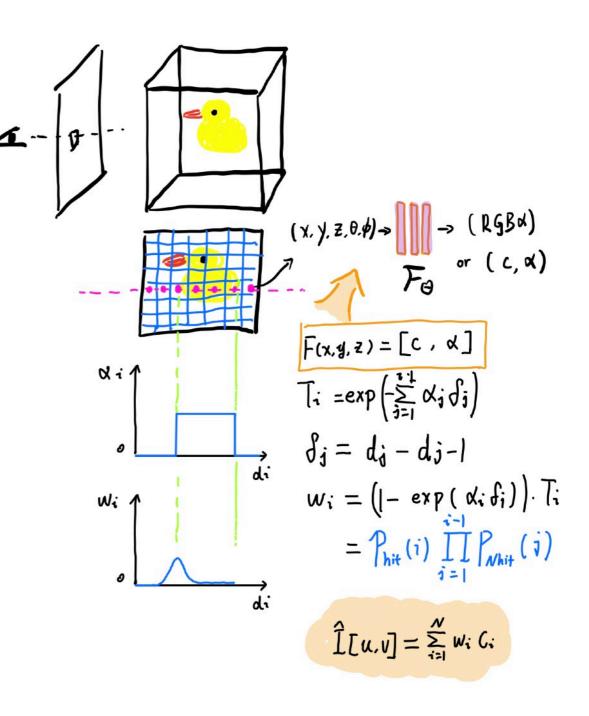
- Radiance, Radiance Field & Volume Rendering
- How to *NEURALIZE* it?

- Radiance, Radiance Field, Volume Rendering
- How to *NEURALIZE* it?
 - Inference: Volume rendering
 - Sample points along the ray (given camera pose)
 - Query RGBα value for each point <u>with MLP</u> (given point coordinate <u>and view direction</u>)
 - Accumulate radiance along the ray

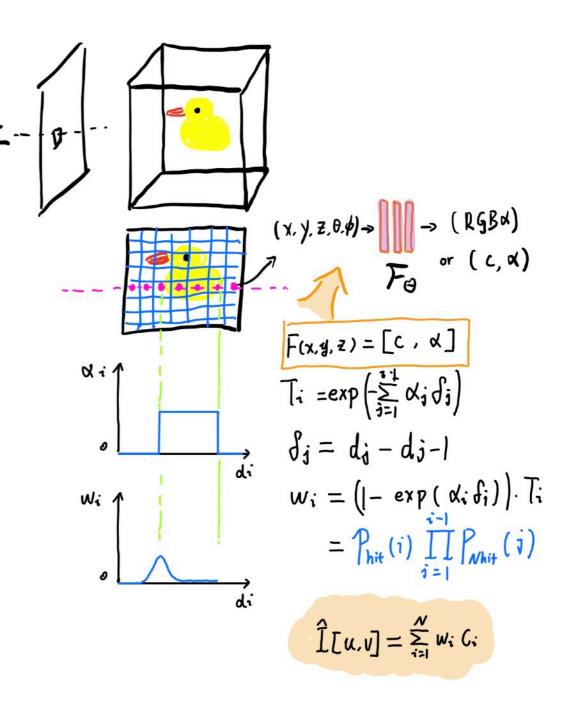


- Radiance, Radiance Field, Volume Rendering
- How to *NEURALIZE* it?
 - Inference: Volume rendering
 - Training: Sample N rays and supervise with color value

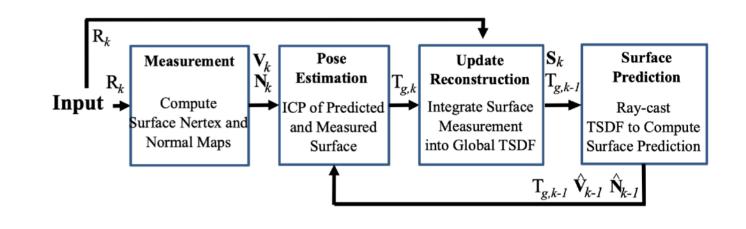




- Radiance, Radiance Field, Volume Rendering
- How to *NEURALIZE* it?
 - Inference: Volume rendering
 - Training: Sample N rays and supervise with color value
- AMAZING Part about NeRF: Directly **model out coming radiance** <u>without knowing</u> <u>incoming radiance</u>



- <u>Preliminary:</u> RGB-D Reconstruction
- <u>Input:</u> RGB image + Depth
- <u>Output:</u> Reconstructed scene (in TDSF, Surfel, or NeRF)
- Key Steps:
 - Camera tracking: track camera pose w.r.t. global map
 - Local map building: reconstruction for local region
 - Global map integration: fuse local reconstruction to global reconstruction



BundleFusion: Real-time Globally Consistent 3D Reconstruction using Online Surface Re-integration

> Angela Dai¹ Matthias Nießner¹ Michael Zollhöfer² Shahram Izadi³ Christian Theobalt²

¹Stanford University ²Max Planck Institute for Informatics ³Microsoft Research

(contains audio)

Ref: KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera

- In a nutshell: **RGB-D Reconstruction** using **NeRF** as scene representation (instead of TSDF or Surfel)
- Motivation: Leverage NeRF representation for RGB-D reconstruction
- Contribution: Real-Time RGB-D reconstruction with NeRF representation

- <u>Input:</u> RGB image + Depth
- <u>Output:</u> Reconstructed scene (in TDSF, Surfel, or NeRF)
- <u>Key Steps:</u>
 - Camera tracking
 - Local map building
 - Global map integration

- In a nutshell: **RGB-D Reconstruction** using **NeRF** as scene representation (instead of TSDF or Surfel)
- Input & Output

- <u>Input:</u> RGB image + Depth
- <u>Output:</u> Reconstructed scene (in TDSF, Surfel, or NeRF)
- <u>Key Steps:</u>
 - Camera tracking
 - Local map building
 - Global map integration

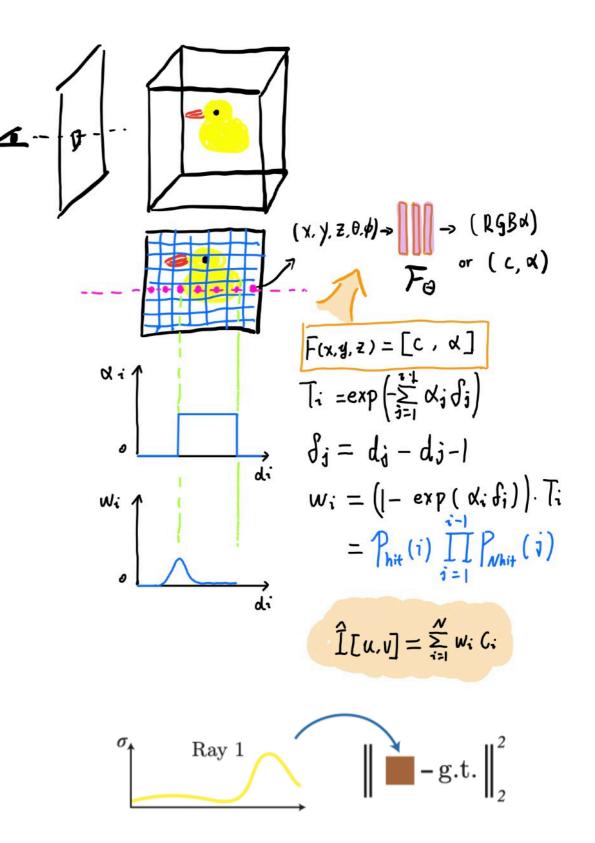
- In a nutshell: Real-time **RGB-D Reconstruction** using **NeRF** as scene representation (instead of TSDF or Surfel)
- Input & Output
- Camera pose: assumed to be obtained with existing approach (known)

- <u>Input:</u> RGB image + Depth
- <u>Output:</u> Reconstructed scene (in TDSF, Surfel, or NeRF)
- <u>Key Steps:</u>
 - Camera tracking
 - Local map building
 - Global map integration

- In a nutshell: **RGB-D Reconstruction** using **NeRF** as scene representation (instead of TSDF or Surfel)
- Input & Output
- Camera pose: assumed to be obtained with existing approach (known)
- **Key of the paper**: How to <u>reconstruct Neural</u> <u>Radiance Field w/o additional supervision</u>
 - i.e. How to train NeRF together with camera tracking?

- <u>Input:</u> RGB image + Depth
- <u>Output:</u> Reconstructed scene (in TDSF, Surfel, or NeRF)
- <u>Key Steps:</u>
 - Camera tracking
 - Local map building
 - Global map integration

- How to <u>reconstruct Neural Radiance</u> <u>Field w/o additional supervision</u>
 - NeRF recap: Volume rendering
 - Training data: RGB image + camera pose
 - Steps:
 - Camera pose tracking
 - Keyframe selection: the lower overlap the better
 - Train the network with selected keyframe (with camera pose)



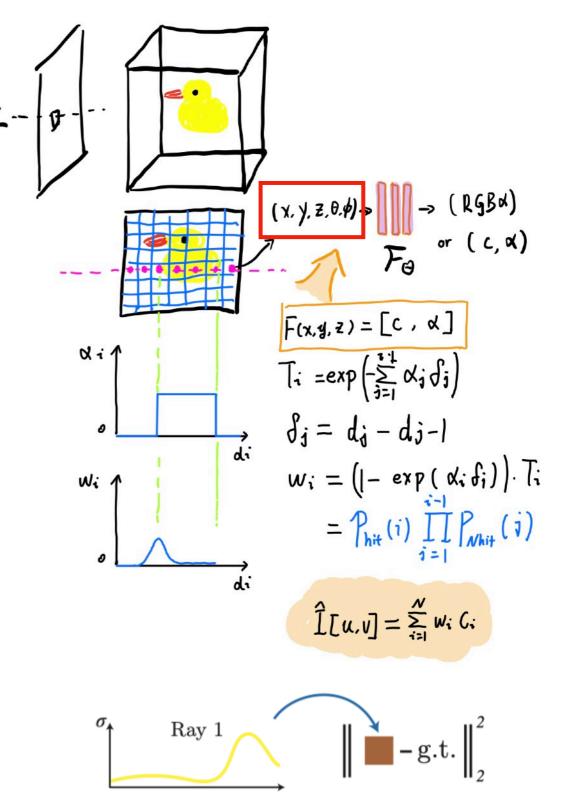
- More details...
 - Differences compared to NeRF
 - Does not model <u>view independent</u> <u>rendering</u>
 - Additional geometric loss: down-weight depth loss at uncertain regions

$$\hat{D}[u,v] = \sum_{i=1}^{N} w_i d_i, \quad \hat{I}[u,v] = \sum_{i=1}^{N} w_i \mathbf{c}_i.$$

$$\hat{D}_{var}[u,v] = \sum_{i=1}^{N} w_i (\hat{D}[u,v] - d_i)^2.$$

$$L_{g} = \frac{1}{M} \sum_{i=1}^{W} \sum_{(u,v)\in s_{i}} \frac{e_{i}^{g}[u,v]}{\sqrt{\hat{D}_{var}[u,v]}}.$$

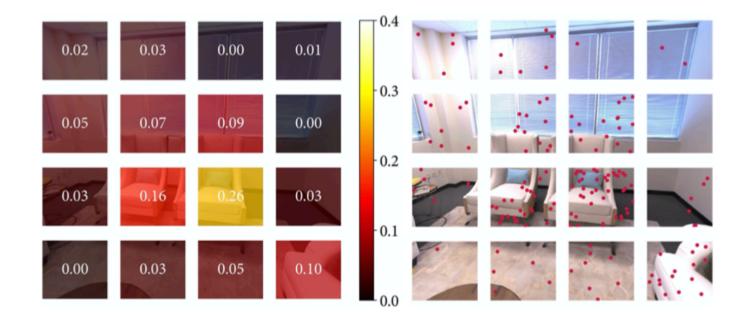
 $\min_{\theta,\{T_i\}} (L_g + \lambda_p L_p) \, .$



- More details...
 - Differences compared to NeRF
 - Keyframe Selection: whether nor to add current frame to training set
 - Portion of <u>current frame that is already explainable by existing</u> <u>model</u> (measured by **normalized depth error**)

$$P = \frac{1}{|s|} \sum_{(u,v)\in s} \mathbb{1}\left(\frac{\left|D[u,v] - \hat{D}[u,v]\right|}{D[u,v]} < t_D\right).$$

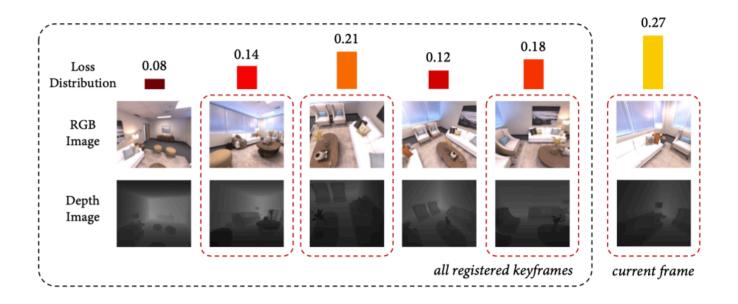
- More details
 - Keyframe selection
 - Image active sampling:



—— strategy for pixel sampling as supervision

- Uniformly sample for the first time (one sample per [8x8] grid)
- Normalize loss to get probability of been sampled for each region

- More details
 - Keyframe selection
 - Image active sampling
 - Keyframe active sampling & Bounded Keyframe Selection
 - For each iteration of training:
 - Random sample keyframes according to loss distribution
 - Always include last keyframe



• Evaluation of reconstruction: Replica dataset, use iMAP pose

		room-0	room-1	room-2	office-0	office-1	office-2	office-3	office-4	Avg.
iMAP	# Keyframes Acc. [cm] Comp. [cm] Comp. Ratio [< 5cm %]	11 3.58 5.06 83.91	12 3.69 4.87 83.45	12 <mark>4.68</mark> 5.51 75.53	10 <mark>5.87</mark> 6.11 77.71	11 <mark>3.71</mark> 5.26 79.64	10 4.81 5.65 77.22	14 4.27 5.45 77.34	11 4.83 <mark>6.59</mark> 77.63	13.37 4.43 5.56 79.06
TSDF Fusion	Acc. [cm] Comp. [cm] Comp. Ratio [< 5cm %]	4.21 5.04 <mark>76.90</mark>	3.08 4.35 <mark>79.87</mark>	<mark>2.88</mark> 5.40 77.79	<mark>2.70</mark> 10.47 79.60	<mark>2.66</mark> 10.29 71.93	4.27 6.43 <mark>71.66</mark>	4.07 6.26 <mark>65.87</mark>	3.70 <mark>4.78</mark> 77.11	3.45 6.63 <mark>75.09</mark>

• Quantitive result: marginal improvement

• Evaluation of reconstruction: Replica dataset, use iMAP pose

(a) Chair

(b) Back of Objects

(c) Small Objects

(d) Black Chair

- Qualitative result
 - Better in hole filing (learn the unobservable geometric structures by color supervision)
 - More cohesive, less artifacts

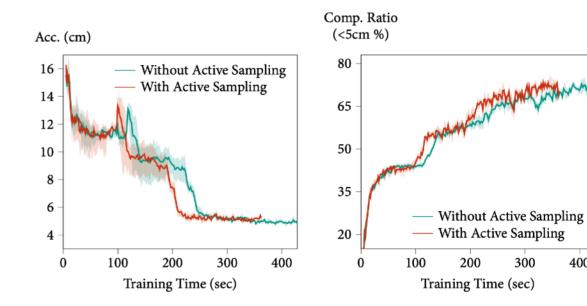
Evaluation of camera tracking: TUM RGB-D dataset ${\color{black}\bullet}$

	fr1/desk (cm)	fr2/xyz (cm)	fr3/office (cm)
iMAP	4.9	2.0	5.8
BAD-SLAM	1.7	1.1	1.73
Kintinuous	3.7	2.9	3.0
ORB-SLAM2	1.6	0.4	1.0

Table 3: ATE RMSE in cm on TUM RGB-D dataset.

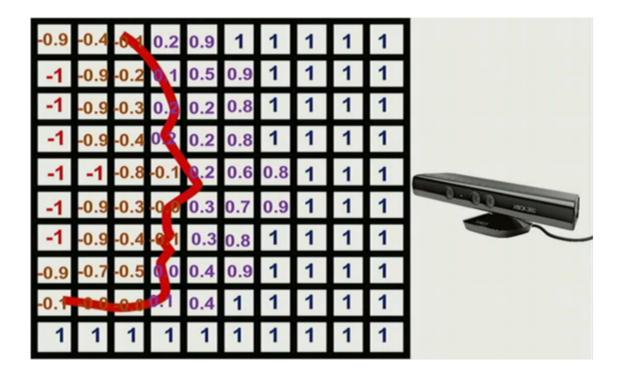
Ablation study

		Width		Window		Pixels	
	Default	128	512	3	10	100	400
Tracking Time [ms]	101	80	173	84	144	74	160
Joint Optim. Time [ms]	448	357	777	373	647	340	716
Comp. Ratio [<5cm %]	77.22	75.79	76.91	75.82	77.35	77.33	77.49

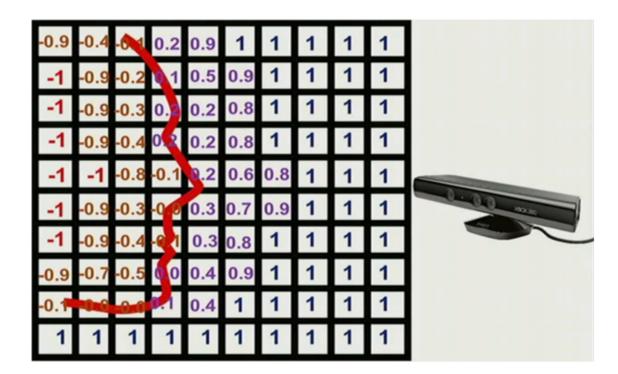


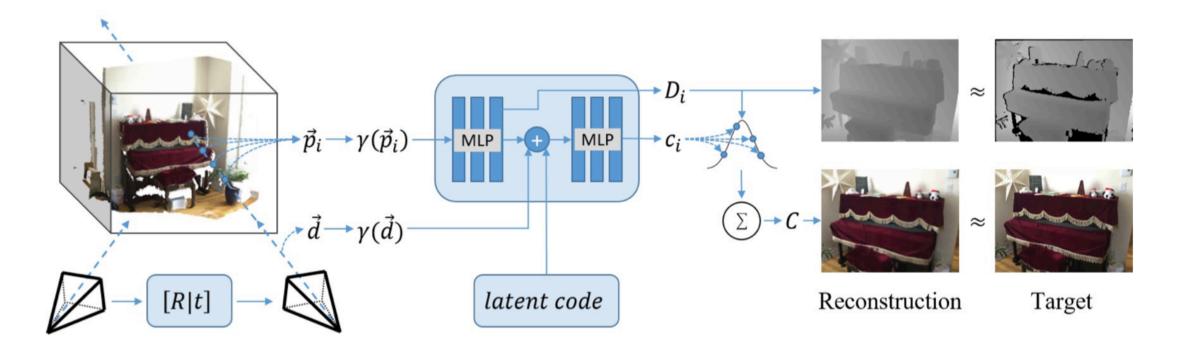
400

- Preliminary about TSDF (Truncated Signed Distance Function)
 - **Signed**: Positive if outside model, negative otherwise
 - **Distance**: value = distance to the surface
 - **Truncated**: equal to a fix value when far enough to surface
 - **Function**: input position (x, y, z), output distance value

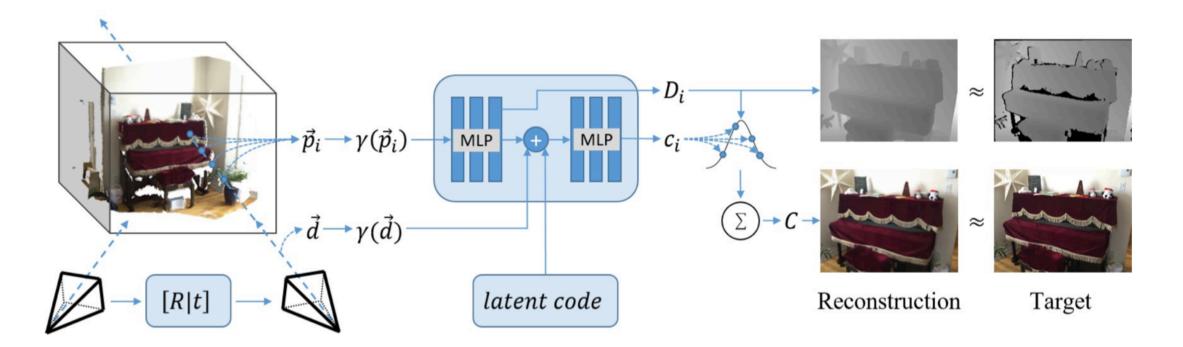


- Preliminary about TSDF (*Truncated* <u>Signed</u> **Distance** FUNCTION)
- Convert to mesh: Marching Cubes
- Convert to depth: surface rendering

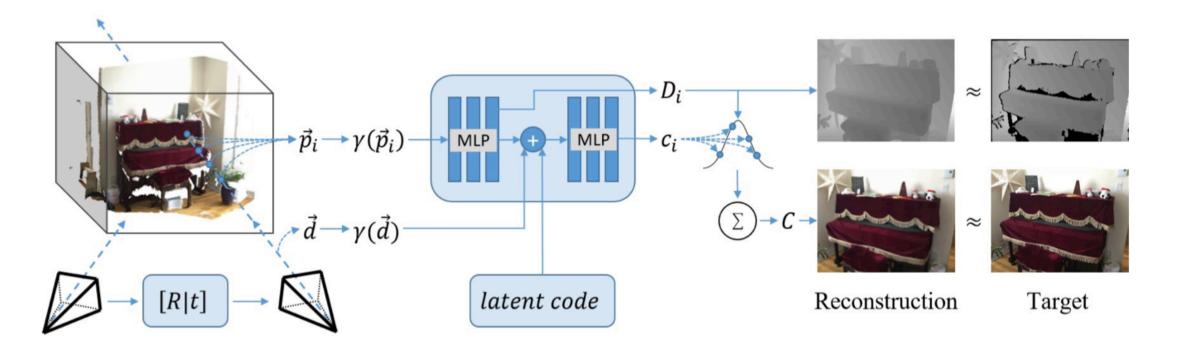




- In a nutshell: Improvement of NeRF representation by:
- Motivation: TSDF provide better geometric detail, make use of color supervision



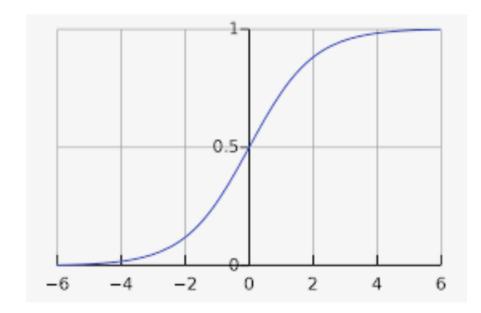
- In a nutshell: Improvement of NeRF representation by:
 - Estimate <u>TSDF + color</u> instead of <u>volume density + color</u> (for **hard boundary** and better shape)
 - Additional depth supervision (given RGB-D input)
 - Input latent code to control to correct for effects like auto-white balancing (guarantee the same color for the same position)

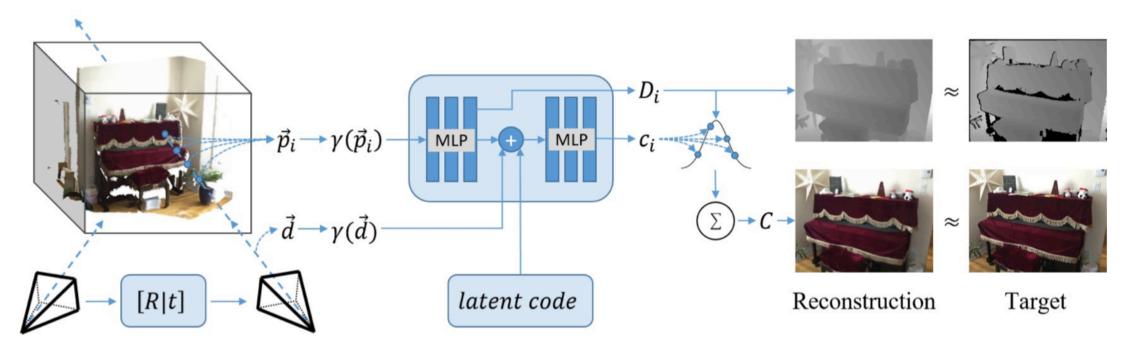


• Volume rendering for TSDF

$$w_i = \sigma(s \cdot D_i) \cdot \sigma(-s \cdot D_i).$$

$$\hat{D}[u,v] = \sum_{i=1}^{N} w_i d_i, \quad \hat{I}[u,v] = \sum_{i=1}^{N} w_i \mathbf{c}_i.$$





- Loss
 - Color objective (4)
 - Same as NeRF
 - Free-space objective (5)
 - Predicted TSDF value must be 1
 - Singed distance objective (6)
 - Predicted distance value must be closed to true distance value

$$\mathcal{L}(\mathcal{P}) = \sum_{b=0}^{B-1} \lambda_1 \mathcal{L}_{rgb}^b(\mathcal{P}) + \lambda_2 \mathcal{L}_{fs}^b(\mathcal{P}) + \lambda_3 \mathcal{L}_{tr}^b(\mathcal{P}).$$

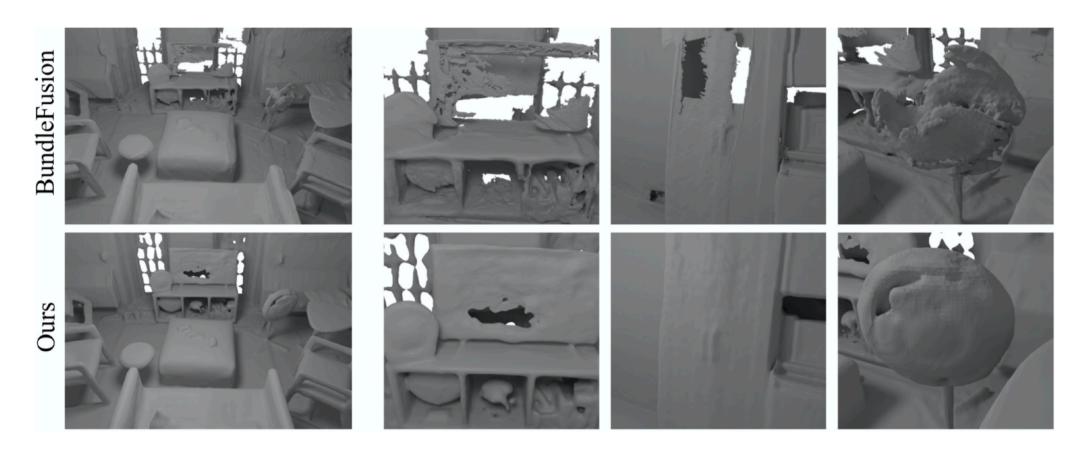
$$\mathcal{L}_{rgb}^b(\mathcal{P}) = \frac{1}{|P_b|} \sum_{p \in P_b} (C_p - \hat{C}_p)^2. \qquad (4)$$

$$\mathcal{L}_{fs}^b(\mathcal{P}) = \frac{1}{|P_b|} \sum_{p \in P_b} \frac{1}{|S_p^{fs}|} \sum_{s \in S_p^{fs}} (D_s - 1)^2. \qquad (5)$$

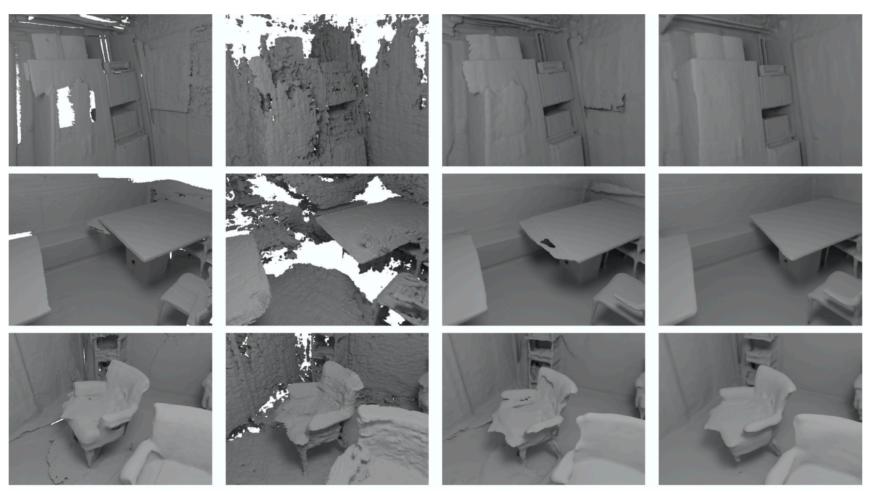
$$\mathcal{L}_{tr}^b(\mathcal{P}) = \frac{1}{P_b} \sum_{p \in P_b} \frac{1}{|S_p^{tr}|} \sum_{s \in S_p^{tr}} (D_s - \hat{D}_s)^2. \qquad (6)$$

Method	$\mathbf{C}\textbf{-}\ell_1\downarrow$	IoU ↑	$\mathbf{NC}\uparrow$	F-score ↑
BundleFusion	0.062	0.528	0.869	0.701
COLMAP + Poisson	0.083	0.512	0.840	0.688
NeRF + Depth	0.073	0.385	0.716	0.619
Ours	0.027	0.744	0.910	0.909

- Results
 - Quantitative evaluation on Synthetic dataset
 - Use BundleFusion pose
 - Evident improvement



- Qualitative Results
 - Better in hole filling



• Ablation studies

Comparison

	iMAP	Neu-Surf
Representation	Neural Radiance Filed (view independent)	TSDF + Neural Radiance Filed
Supervision	Color + Depth	Color + Depth
Real-Time	Yes	No

Taking a **DEEPER** Look!

- Modeling REAL PRB rendering
 - Camera center & view
 - Surface position, normal
 - Material BRDF (Cook-Torrance Model)
 - Incoming radiance: very hard to control & capture

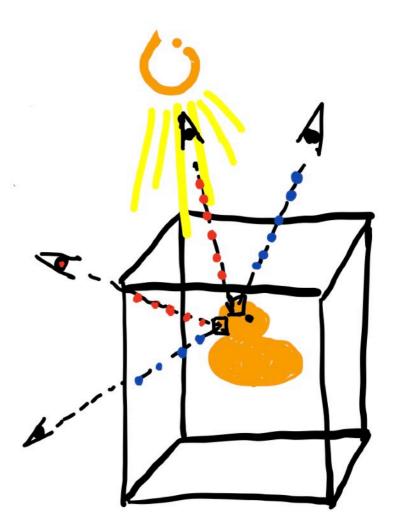
$$L(\hat{\boldsymbol{x}}, \boldsymbol{w}^{o}) = L^{e}(\hat{\boldsymbol{x}}, \boldsymbol{w}^{o}) + \int_{\Omega} B(\hat{\boldsymbol{x}}, \hat{\boldsymbol{n}}, \boldsymbol{w}^{i}, \boldsymbol{w}^{o}) L^{i}(\hat{\boldsymbol{x}}, \boldsymbol{w}^{i}) (\hat{\boldsymbol{n}} \cdot \boldsymbol{w}^{i}) \, d\boldsymbol{w}^{i} = M_{0}(\hat{\boldsymbol{x}}, \hat{\boldsymbol{n}}, \boldsymbol{v}), \quad (5)$$

Ref: GAMES-101

* Credit to Jiaming for this part

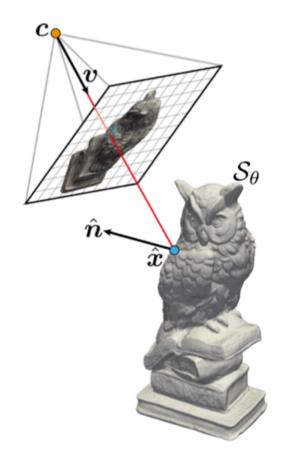
Taking a **DEEPER** Look!

- Approximation of PBR by Deep Implicit Rendering
 - NeRF-style:
 - learn radiance along each possible ray
 - specular effect (caused by nonlambertion material or ambient light)
 is encoded in the ray along certain direction



Taking a **DEEPER** Look!

- Approximation of PBR by Deep Implicit Rendering
 - NeRF-style: encode material and lighting along the ray
 - IDR-style:
 - Predict ambient light (as latent vector) with implicit network
 - Model material BRDF, ambient lighting, incoming lighting all inside Neural Render model (MLP) at intersection point



* Credit to Jiaming for this part

Acknowledge

• Thanks to the help of Jiaming, Zhiyuan, Yifan and Huangdi for the thoughtful discussion and generously sharing of knowledge and insight

Thanks for your Attention

Siyu ZHANG

Research Engineer

ZJU-SenseTime Joint Lab of 3D Vision

zhangsiyu1@sensetime.com