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Nerf(Neural	Radiance	Fields)
• Radiance
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Ref: GAMES-101



Nerf(Neural	Radiance	Fields)
• Radiance 

• Radiance Field & Volume Rendering 

• Input camera pose and output RGB 
image 

• Method:  

• Sample points along the ray (given camera 
pose) 

• Query RGBα value for each point (given 
point coordinate) 

• Accumulate radiance along the ray
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Ref: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis



Nerf(Neural	Radiance	Fields)
• Radiance, Radiance Field & Volume 

Rendering 

• How to NEURALIZE it?
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Ref: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis



Nerf(Neural	Radiance	Fields)
• Radiance, Radiance Field, Volume 

Rendering 

• How to NEURALIZE it? 

• Inference: Volume rendering 

• Sample points along the ray (given camera 
pose) 

• Query RGBα value for each point with MLP 
(given point coordinate and view direction ) 

• Accumulate radiance along the ray
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Ref: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis



Nerf(Neural	Radiance	Fields)
• Radiance, Radiance Field, Volume 

Rendering 

• How to NEURALIZE it? 

• Inference: Volume rendering 

• Training: Sample N rays and supervise 
with color value
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Ref: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis



Nerf(Neural	Radiance	Fields)
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Ref: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

• Radiance, Radiance Field, Volume 
Rendering 

• How to NEURALIZE it? 

• Inference: Volume rendering 

• Training: Sample N rays and supervise 
with color value 

• AMAZING Part about NeRF: Directly 
model out coming radiance without knowing 
incoming radiance 



iMAP
• Preliminary: RGB-D 

Reconstruction 

• Input: RGB image + Depth  

• Output: Reconstructed scene (in 
TDSF, Surfel, or NeRF)  

• Key Steps: 

• Camera tracking: track camera 
pose w.r.t. global map 

• Local map building: 
reconstruction for local region  

• Global map integration: fuse 
local reconstruction to global 
reconstruction
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Ref: KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera



iMAP
• In a nutshell: RGB-D Reconstruction using 

NeRF as scene representation (instead of TSDF 
or Surfel) 

• Motivation: Leverage NeRF representation for 
RGB-D reconstruction 

• Contribution: Real-Time RGB-D reconstruction 
with NeRF representation
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• Input: RGB image + Depth  

• Output: Reconstructed scene 
(in TDSF, Surfel, or NeRF)  

• Key Steps: 

• Camera tracking 

• Local map building 

• Global map integration



iMAP
• In a nutshell: RGB-D Reconstruction using 

NeRF as scene representation (instead of TSDF 
or Surfel) 

• Input & Output
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• Input: RGB image + Depth  

• Output: Reconstructed scene 
(in TDSF, Surfel, or NeRF)  

• Key Steps: 

• Camera tracking 

• Local map building 

• Global map integration



iMAP
• In a nutshell: Real-time RGB-D 

Reconstruction using NeRF as scene 
representation (instead of TSDF or Surfel) 

• Input & Output 

• Camera pose: assumed to be obtained with 
existing approach (known)
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• Input: RGB image + Depth  

• Output: Reconstructed scene 
(in TDSF, Surfel, or NeRF)  

• Key Steps: 

• Camera tracking 

• Local map building 

• Global map integration



iMAP
• In a nutshell: RGB-D Reconstruction using 

NeRF as scene representation (instead of TSDF 
or Surfel) 

• Input & Output 

• Camera pose: assumed to be obtained with 
existing approach (known) 

• Key of the paper: How to reconstruct Neural 
Radiance Field w/o additional supervision  

• i.e. How to train NeRF together with camera 
tracking?
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• Input: RGB image + Depth  

• Output: Reconstructed scene 
(in TDSF, Surfel, or NeRF)  

• Key Steps: 

• Camera tracking 

• Local map building 

• Global map integration



iMAP
• How to reconstruct Neural Radiance 

Field w/o additional supervision 

• NeRF recap: Volume rendering 

• Training data: RGB image + camera 
pose 

• Steps: 

• Camera pose tracking 

• Keyframe selection: the lower overlap 
the better 

• Train the network with selected 
keyframe (with camera pose)
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iMAP
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• More details… 

• Differences compared to NeRF 

• Does not model view independent 
rendering 

• Additional geometric loss: down-weight 
depth loss at uncertain regions



iMAP
• More details… 

• Differences compared to NeRF 

• Keyframe Selection: whether nor to add current frame to training set 

• Portion of current frame that is already explainable by existing 
model (measured by  normalized depth error)
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iMAP
• More details 

• Keyframe selection 

• Image active sampling:  
 
    —— strategy for pixel sampling as supervision 

• Uniformly sample for the first time (one sample per [8x8] grid) 

• Normalize loss to get probability of been sampled for each region
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iMAP
• More details 

• Keyframe selection 

• Image active sampling 

• Keyframe active sampling & Bounded Keyframe Selection 

• For each iteration of training: 

• Random sample keyframes according to loss distribution 

• Always include last keyframe
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iMAP
• Evaluation of reconstruction: Replica dataset, use iMAP pose 

• Quantitive result: marginal improvement
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iMAP
• Evaluation of reconstruction: Replica dataset, use iMAP pose 

• Qualitative result 

• Better in hole filing (learn the unobservable geometric structures by color supervision) 

• More cohesive, less artifacts
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iMAP
• Evaluation of camera tracking: TUM RGB-D dataset 

• Ablation study

21



Neural	RGB-D	Surface	Reconstruction

• Preliminary about TSDF (Truncated 
Signed Distance Function) 

• Signed: Positive if outside model, 
negative otherwise 

• Distance: value = distance to the 
surface 

• Truncated: equal to a fix value 
when far enough to surface 

• Function: input position (x, y, z), 
output distance value
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Neural	RGB-D	Surface	Reconstruction

• Preliminary about TSDF (Truncated 
Signed Distance FUNCTION) 

• Convert to mesh: Marching Cubes 

• Convert to depth: surface rendering
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Neural	RGB-D	Surface	Reconstruction

• In a nutshell: Improvement of NeRF representation by: 

• Motivation: TSDF provide better geometric detail, make use of color supervision

24



Neural	RGB-D	Surface	Reconstruction

• In a nutshell: Improvement of NeRF representation by: 

• Estimate TSDF + color instead of volume density + color (for hard boundary and better 
shape) 

• Additional depth supervision (given RGB-D input) 

• Input latent code to control to correct for effects like auto-white balancing (guarantee the 
same color for the same position)
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Neural	RGB-D	Surface	Reconstruction

• Volume rendering for TSDF
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Neural	RGB-D	Surface	Reconstruction

• Loss 

• Color objective (4) 

• Same as NeRF 

• Free-space objective (5) 

• Predicted TSDF value must be 1 

• Singed distance objective (6) 

• Predicted distance value must be closed to true distance value
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Neural	RGB-D	Surface	Reconstruction

• Results 

• Quantitative evaluation on Synthetic dataset 

• Use BundleFusion pose 

• Evident improvement
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Neural	RGB-D	Surface	Reconstruction

• Qualitative Results 

• Better in hole filling
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Neural	RGB-D	Surface	Reconstruction

• Ablation studies
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Comparison	
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iMAP Neu-Surf

Representation Neural Radiance Filed (view 
independent)

TSDF + Neural Radiance 
Filed

Supervision Color + Depth Color + Depth

Real-Time Yes No



Taking	a	DEEPER	Look!
• Modeling REAL PRB rendering 

• Camera center & view 

• Surface position, normal 

• Material BRDF (Cook-Torrance Model) 

• Incoming radiance: very hard to control & capture 

32

Ref: GAMES-101
* Credit to Jiaming for this part



Taking	a	DEEPER	Look!
• Approximation of PBR by Deep 

Implicit Rendering 

• NeRF-style:  

• learn radiance along each possible ray 

• specular effect (caused by non-
lambertion material or ambient light) 
is encoded in the ray along certain 
direction
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* Credit to Jiaming for this part



Taking	a	DEEPER	Look!
• Approximation of PBR by Deep 

Implicit Rendering 

• NeRF-style: encode material and 
lighting along the ray 

• IDR-style:  

• Predict ambient light (as latent 
vector) with implicit network  

• Model material BRDF, ambient 
lighting, incoming lighting all inside 
Neural Render model (MLP) at 
intersection point
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* Credit to Jiaming for this part
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