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A bit of Recap of Objet 6D Pose Estimation

® As aregression problem
e Pose Estimation: direct regression

e Pose Tracking: render and regression

e As a matching problem

e Pose Estimation: matching from 1image pixels to points in object
frame

® Pose Tracking: matching between frames
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DeeplM: Deep Iterative Matching for 6D Pose Estimation, ECCV, 2018




A bit of Recap of Objet 6D Pose Estimation

® As aregression problem
e Pose Estimation: direct regression

e Pose Tracking: render and regression

® Are there possible improvements?




Content

o Paper 1: I Like to Move it 6D Pose Estimation as an Action Decision
Process - model object pose refinement as discrete decision
making process

® Paper 2: Pose-Free Reinforcement Learning for 6D Pose Estimation -
model object pose refinement as as reinforcement learning
problem




6D Pose as Action Decision Problem

e Mecthodology

Input:

e Cropped image of real object +
rendered object with 1nitial pose

e (Concat with rendered depth and
mask

Output: 13 DoF action
e Action: +tx, -tx, +rX, -1X, ..., stop

e Step size 1s fixed

Initialization: Random seed and
vote for object center (detailed
next page)
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6D Pose as Action Decision Problem

e [nitialization by voting

e (bservation:

e Will usually translate then rotate

e Action can still converge even
with large offset.

e Method:

¢ Random sample seeds

e Vote for object center by aggregate
actions.




6D Pose as Action Decision Problem

® Meth() dOlOgy Real Object 3D Model

+
@ Rendered Object

e Input: RGB image + rendered e
Image B s or
Pose Steps and Stop

e Qutput: 13 DoF action :
¢ [nitialization: Random seed and } )

vote for object center Observation: = Pose upaete
resized Patch Rendering

around Rendering




6D Pose as Action Decision Problem

e Difference with existing approach:

Real Object j 3D Model
e Discrete action with fixed size 5y Rondored Objoct /5y
N I ______ Actonvector |
o o . o Discrete Actions for
o Intuition: Why this is better? FocsShpa and S
e (eneralization ability D 0
Observation: E Pose Update:
. . Cropped & Modi
® Wlder Converge b&Sln resi;)epd Patch Rendfgring

around Rendering

e Lighter network + simpler task

e Synthetic training




6D Pose as Action Decision Problem

e Experiment
e Dataset: YCB-Video, LAVAL

* Trained only on YCB and eval
on both

e While analysis, they amazingly
found that:

YCB which we further analyzed. It turned out that the annotations for some of
the objects are slightly shifted as shown in Fig. [} Our method — in contrast to
others with which we compare in Tab.[I|- is fully trained on synthetic data. Thus,
we cannot learn an annotation offset during training time due to the fact that
our training setup provides pixel-perfect ground truth. Further investigations



6D Pose as Action Decision Problem

e Problem: GT 1s wrong... (all methods before are trying to
overfit on false GT)




6D Pose as Action Decision Problem

e Experiment
e Dataset: YCB-Video, LAVAL

* Trained only on YCB and eval
on both.

e Evaluation on YCB (single-
object model) - surpass SoTA
method

SD [30] HM [53] Ours OS|Ours + Shift PRBPF [L3]|Ours OS + Shift

33.00 75.80 7.70 91.88
46.60 86.20 88.36 97.76
75.60 67.70 58.35 91.95
40.80 38.10 38.23 57.99
70.60 95.20 87.74 98.49
18.10 5.83 47.90 52.89
12.20 82.20 58.68 76.00
59.40 87.80 37.08 89.20
33.30 46.50 45.99 60.61
16.60  30.80 74.02 90.43
90.00 57.90 99.40 100.00
70.90 73.30 95.04 95.30
30.50 36.90 99.44 99.44
40.70  17.50  45.35 76.59
63.50 78.80 52.77 97.35
27.70  33.90 52.28 63.48
17.10 43.10 63.33 81.11
4.80 8.88 39.53 41.73
25.60 50.10 64.01 82.83
8.80 32.50 88.02 91.37
34.70 66.30 80.83 80.83
39.07  53.11 63.05‘ 81.75

63.30|  65.61 91.15
77.80|  84.34 90.74
79.60|  78.43 91.05
73.00| 66.83 76.06
84.70|  86.05 94.03
64.20  65.90 69.12
64.50| 79.00 83.01
83.00( 82.92 92.78
51.80| 75.21 79.44
18.40|  84.99 90.19
63.70| 85.14 94.22
60.50| 89.27 90.68
28.40| 85.89 87.03
77.90| 78.95 87.83
71.80|  76.56 91.95

2.30| 4862 53.52
38.70| 79.78 83.99
67.10| 73.27 75.31
38.30| 56.09 65.97
32.30| 67.31 78.06
84.10| 86.52 86.70
58.35|  76.03 83.47



6D Pose as Action Decision Problem

e Robustness & Convergence Analysis

e (an still converge even when the 1nitial pose is unreasonably bad.
- make 1t possible to initialize without other approaches.

e While previous methods (e.g. Deep 6DoF tracking) failed when
overlapping i1s less than 50%

results are summarized in Fig. |6l Note that even for a large deviation of m = 12
which is significantly larger then the deviation found in the video sequence, our
accuracy is ADD = 73.8%. Moreover, we can also see reasonable convergence in
cases with 50% or fewer bounding box overlap where other methods [21] struggle

and drift.
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6D Pose as Action Decision Problem

e Experiment: Evaluation on
LAVAL

e Not good enough 1n rotation

Ours full | Ours w/o D
Occlusion 0% 15% 30% 45%| 0% 15% 30% 45%
Clock
T[mm)] 14.02 20.54 25.85 51.92| 9.39 9.96 32.58 15.91
R[deg] 940 10.84 12.74 17.05| 29.15 27.92 30.72 28.40
Cookie Jar
T[mm)] 3.82 599 952 1518 1.79 2.75 11.62 5.95
R[deg] 6.48 17.82 18.22 15.89| 28.77 18.18 24.30 19.02
Dog
T[mm)] 12.09 2837 5548 7791 6.10 10.76 33.89 15.62
R|[deg] 11.70 14.21 2243 23.80| 20.75 26.81 24.22 22.53
Dragon
T[mm)] 22.47 29.39 36.37 40.06] 25.69 25.13 27.71 30.65
R|[deg] 3.34 489 11.65 13.39| 27.16 36.40 37.61 30.94
Shoe
T[mm)] 9.72 1791 24.33 37.34| 44.61 19.90 38.04 41.90
R|[deg] 584 9.26 17.89 16.91| 62.78 39.47 43.50 24.73
Watering Can
T [mm] 14.67 21.66 18.68 33.26| 11.61 20.54 20.96 26.10
R[deg] 11.89 19.80 23.43 33.54| 38.89 40.85 36.30 35.23




6D Pose as Action Decision Problem

e Experiment: Runtime

and the number of actions. In our current implementation, the runtime for one
loop in the cycle breaks down in the image preprocessing done on CPU and the
inference on the GPU. We performed a runtime test averaging 512 iterations.
The results are shown in Tab. [3]

Average Runtime on CPU GPU Total

Average Runtime in ms 14.6 5.2 19.8
Table 3: Average Runtime of Action Decision Process Cycle.

Given the average of 4.2 actions on our YCB tests, we report an overall average
runtime of 83.16 ms or 12 FPS. Note that the runtime could be increased if the
image processing was also ported to the GPU.



6D Pose as Reinforcement Learning Problem

e Quick recap of RL (considering only control problem)

¢ Terminologies:
e State: information about the world

e Action: action to trigger next state from current state, sampled from
policy

e Reward: how good 1s current action.

e Target: get policy that would optimize value function (expected
cumulated reward for all times)




Discussion: Compare (D)RL and Supervised Learning

e Similarities:

e Target: get some output from network that would produce maximally possible
performance

e Method: optimize network parameter w.r.t. performance measurement

e For Supervised Learning

e Performance measurement comes from a differentiable Loss function of
network output

e Supervision 1s dense

¢ For Reinforcement Learning

e Performance measurement does not necessarily relate to network output
(for example, it may comes from the environment)

e Supervision 1s sparse and temporal correlated



Discussion: Compare (D)RL and Supervised Learning

e Use DRL instead of Supervised Learning when ...

e [.oss some part of the network 1s non- differentiable

e Supervision 1S sparse

e Task 1s temporal correlated (e.g. path planning)




6D Pose as Reinforcement Learning Problem

e Quick recap of RL (considering only control problem)

¢ Terminologies:
e State: information about the world

e Action: action to trigger next state from current state, sampled from
policy

e Reward: how good 1s current action.

e Target: get policy that would optimize value function (expected
cumulated reward for all times)

¢ Why use Rl instead of Supervised L.earning?

e Using 2D mask as sparse supervision



6D Pose as Reinforcement Learning Problem

e Problem formulation

e Maximize future discounted rewards: V7(s) = E[ > ;50 7*7s]




6D Pose as Reinforcement Learning Problem

e Reward: 2D Mask-based reward

e JoU Difference Reward: Encourage overlapping of 2D mask

f

T, T < Xihr
r1 = fp(IoUk41) — fo(IoUk), 16@) =1 4o _ g2, 2> Xun

e (Goal Reached Reward: Stop refining when reach IoU thr

oy = 1, IOUk Z IOUthr
@71 0, IoU < IoUyg,

e (eneralization Reward: Bootstrap the network

_1
rc = min(|[er — ¢glf2 5 1)



6D Pose as Reinforcement Learning Problem

| Q.
3D modely.y | .o---- 4 —— i 3D modely | .

___________________________________________________________________________________

o8

o render
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¢ Problem formulation
e Maximize future discounted rewards: V7 () = E[> x50 7" %]

e State: rendered RGB 1mage, projection mask, observed RGB
image, gt-2D box

e Action: discrete & hand-craft action



6D Pose as Reinforcement Learning Problem

o Action:

V4 z z Z \
. . & /,' —|2mm 5mm]11mm
e Discrete hand-craft action Tae v e AT y

X

Qrg — Qg3 Qry — Aty Qrg — arqq ar1z a=

[aT':IR]

e Proved to be better than

continuous action. ‘ | ( % |
50 y y y y
X g X X X /

Qro — Qg3 Qg4 — Qg7 Qgrg — Agr11 ari2

Action Style Continuous Discrete
Metric | Proj.2D ADD | Proj.2D ADD

Initial 14.2 35.6 14.2 35.6
Epoch: 800 37.6 43.8 58.9 52.8
Epoch:1600 45.7 46.7 63.3 554
Epoch:2400 57.5 56.2 75.3 70.7
Epoch:3200 60.4 60.9 80.6 79.2

Table 3. Ablation on action style.




6D Pose as Reinforcement Learning Problem

e Composite Reinforced Optimization

e Policy-gradient optimization based on PPO

e Off-policy optimization based with replay buffer




6D Pose as Reinforcement Learning Problem

e Experiment: Evaluation on Linemod & T-LESS

Train data | Pose-Free Init | +Pose-Free Refine | Gt Pose Init | +Pose-Free Refine
Obicct | AAE[33]  DPOD-SYN[40] | SSD6D[12] DPOD-SYN+Refine ~AAE-+ours || YOLO6D[36] PoseCNN[38] | PoseCNN+DeepIM-SYN[15] | PoseCNN+ours
Ject | App ADD ADD ADD ADD ADD ADD Proj.2D ADD Proj2D ADD
Ape | 3.96 37.22 55.23 65.4 21.6 27.8 81.7 239 956  60.5
Benchvise | 20.92 66.76 72.69 84.5 81.8 68.9 92.2 93.1 947 889
Camera | 3047 2422 3476 415 36.6 475 97.0 84.7 950  64.6
Can | 35.87 52.57 83.59 80.9 68.8 71.4 89.6 91.5 931 913
Cat | 17.90 32.36 65.10 80.4 41.8 56.7 96.1 79.5 993 829
Driller | 23.99 66.60 73.32 77.6 63.5 65.4 85.9 82.3 948 920
Duck | 4.86 26.12 50.04 525 272 42.8 92.6 24.0 982 552
Eggbox | 81.01 73.35 89.05 96.1 69.6 98.3 90.8 88.3 978 994
Glue | 45.49 74.96 84.37 76.7 80.0 95.6 81.2 96.9 971 933
Holepuncher | 17.60 24.50 35.35 44.9 42.6 50.9 78.0 20.6 9.7  66.7
Iron | 32.03 85.02 98.78 67.3 75.0 65.6 59.3 85.1 816 758
Lamp | 60.47 57.26 74.27 91.1 71.1 70.3 75.6 85.5 9.0  96.6
Phone | 33.79 29.08 46.98 52.7 417 54.6 88.3 66.1 91.0  69.1
Mean | 3141 50.0 34.1 66.43 701 | 56.0 62.7 | 853 70.9 947 797

Method AAE[33] AAE+Ours Metric Recall scores (%) on ADD
Metric | Proj.2D  VSD | Proj.2D  VSD Class | ape bv. cam can cat | driller | duck
1913065 4955 | 3279 5739 ppoprefine | 52.12 | 64.67 | 2223 | 7751 | 56.49 | 65.23 | 49.04
20 | 2351 41871 2540 4529 PFRL | 69.26 | 78.68 | 27.77 | 77.16 | 64.52 | 79.90 | 48.24
21 56.55 59.06 60.58 62.50 :

29 42.99 46.08 44.78 48.02 Class | egg. | glue | hol. | iron | lamp | phone | Mean
23 21.88 40.38 29.32 44 .44 DPOD-refine | 62.21 | 38.94 | 25.55 | 98.43 | 58.35 | 33.79 | 54.20
Mean 35 12 47 47 38.57 51.53 PFRL | 67.68 | 37.73 | 27.87 | 88.00 | 73.67 | 37.51 | 59.85

Table 2. DPOD-refine/PFRL with DPOD init.



6D Pose as Reinforcement Learning Problem

e Experiment: Runtime

Ape Benchvise Can
A P A P A P

0 [39.0 831|142 50.0 | 168 69.6
5 | 87.0 920 | 48.2 784 | 59.8 84.8
10 | 93.0 934 | 66.1 839 | 71.6 87.5
20 | 952 940 | 784 838.9 | 77.7 90.0
50 | 96.9 942 | 8.1 92.7 | 82.6 91.1

5 62 64 67 65 68 68
Time | 10 | 110 114 | 126 121 | 128 127
(ms) | 20 | 218 220 | 243 234 | 245 243
50 | 529 534 | 588 578 | 588 584

Ep Length

Acc
(%)

Table 4. Accuracy and testing time with respect to episode length.
‘A’ and ‘P’ denote initial poses from AAE [33] and PoseCNN [38],
respectively.



Take-Home Message

® When network 1s not working, turn to the training & val data
at first (your algorithm may really outperform ground truth!)

e When dealing with limited network capacity, learning less 1s
more

e Consider using RL when supervision 1s sparse and temporal
correlated.
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