

Object Pose Estimation by Render and Compare

Siyu ZHANG

Senior UG, SUSTech

Research Intern, 3DV-Research@SenseTime & ZJU CAD

- Problem to solve: Estimate the 6DoF pose of objects
- Typical approach
 - Directly regress translation & rotation
 - Estimate key point coordinates and then solve PnP
 - Pose estimation (refinement) by render and compare

- Input:
 - Image
 - Initial pose (previous frame observation or coarse regressed pose)
 - object model (depends)
- Typical paradigm:
 - Reconstruct Object (depends)
 - Optimize for a better pose:
 - 'Render' the object onto the image.
 - Compare rendered result with image cue, compute the residual accordingly for pose optimization.

- Example of render & compare pipeline: Silhouette tracking
 - Render the silhouette with known model and pose.
 - Convert the silhouette to level set function, evaluate it according to foregroundbackground similarity
 - Update pose by residual of silhouette.
- Reference: PWP3D

- Can we make it **DEEP**?
 - Color cues are unreliable and suffers from shape ambiguity.
- Can we make it **MODEL FREE**?
 - Accurate mesh model is hard to obtained in real world application.
 - Inaccurate model produces disastrous results for silhouette tracking.

- Simple (and naive) approach:
 - Render object with estimated pose
 - Feed rendered image and real image into Neural Network, directly regress relative pose.
- Reference:
 - Deep 6DoF Tracking (*TVCG 2017*)
 - A Framework for Evaluating 6-DOF Object Trackers (*ECCV 2018*)

Input: \mathbf{x}_{pred}	Input: \mathbf{x}_{obs}
conv3-96	conv3-96
fire-48-96	fire-48-96
concate fire-9 fire-19 fire-38 FC- FC	enation 6-384 92-768 84-768 -500 C-6

Output: \mathbf{y}

- Simple (and naive) approach:
 - Render object with estimated pose
 - Feed rendered image and real image into Neural Network, directly regress relative pose.
- Reference:
 - Deep 6DoF Tracking (*TVCG 2017*)
 - A Framework for Evaluating 6-DOF Object Trackers (ECCV 2018)

- Going deeper
 - Reconstruct Object : Construct *feature-metric* model
 - Compared with feature extracted from current frame.
- Paper to share today:
 - LatentFusion:
 - Reconstruct feature voxel, render and compare with depth.
 - Refining 6D Object Pose Predictions using Abstract Render-and-Compare
 - Descriptor learning with contrastive loss.
 - Generate views synthetically and fuse feature to mesh model.

LatentFusion

- 'Deep' render & compare for object pose estimation.
- Capability of handling unseen object without pre-training.
- Model-free object pose estimation dataset.
- Refining 6D Object Pose Predictions using Abstract Render-and-Compare
 - Fusion surface feature (descriptors trained by contrastive loss) onto CAD model
 - Differentiable render and compare with feature

LatentFusion

Methodology

- Overall pipeline
 - Reconstruct 3D feature voxel given reference frame (RGB + Mask + Camera pose)
 - Render & compare with depth error and latent feature error.

1. Modeling and Rendering

Methodology - Reconstruction

- Feature generation
 - RGB + U-Net = 2D feature map
 - Lift 2D feature map to 3D with deprojection
 - 3D U-Net to generate final 3D feature
- View Fusion
 - Transform from camera frame to object frame
 - View aggregation by computing channel mean or with ConvGRU

Methodology - Reconstruction

- A Little bit details...
- The Miracle 3D de-projection
 - 2D feature map: C x (H x W)
 - Lifted 3D feature map: C/D x (D x H x W)
- View Fusion 3D Transformation
 - Generated voxel size: C' x M x M, not defined for 3D rigid body transformation

trix. We compute the object-space volume $\hat{\Psi}$ by sampling $\phi(W^{-1}x'_{ijk})$ for each object-space voxel coordinate x'_{ijk} .

Methodology - Rendering

- Rendering here is defined as a inverse process of reconstruction.
 - Given: a coarse estimation of object pose
 - Generate camera frame latent object by transformation.
 - 3D to 2D U-Net to generate depth and mask.
- Image-based Rendering: warping + weight prediction network (not used in the pipeline)

Methodology - Optimization

• Input:

- Sensory data: RGB, Mask, Depth
- Feature from previous stages: 3D Latent Object
- Bootstrap:
 - translation 2D-3D object center
 - rotation: uniformly sample
 - select top k with residual value
- Optimization
 - Acquire depth by rendering
 - Evaluate depth error and latent error.

 $\mathcal{L}_{ ext{depth}}(\mathcal{D}^*, \mathcal{D}) = \left\| \mathcal{D}^* - \mathcal{D} \right\|_1$

$$\mathcal{L}_{\text{latent}}(\boldsymbol{x}, \boldsymbol{\theta}; \boldsymbol{\Psi}) = \|H_{\boldsymbol{\theta}}(G_{\boldsymbol{\theta}}(\boldsymbol{x})) - H_{\boldsymbol{\theta}}(\boldsymbol{\Psi})\|_{1}$$

$$\operatorname*{argmin}_{\boldsymbol{\theta}} \mathcal{L}_{depth}\left(\boldsymbol{x}, D(\boldsymbol{\theta})\right) + \lambda \mathcal{L}_{latent}(\boldsymbol{x}, \boldsymbol{\theta})$$

Experiment & Results

• Experiment on ModelNet (pose refinement)

Table 1. ModelNet pose refinement experiments compared to DeepIM (DI) [15] and Multi-Path Learning (MP) [32].

	(5°, 5cn	n)	A	DD (0.	1d)	Proj2D (5px)		
	DI	MP	Ours	DI	MP	Ours	DI	MP	Ours
bathtub	71.6	85.5	85.0	88.6	91.5	92.7	73.4	80.6	94.9
bookshelf	39.2	81.9	80.2	76.4	85.1	91.5	51.3	76.3	91.8
guitar	50.4	69.2	73.5	69.6	80.5	83.9	77.1	80.1	96.9
range_hood	69.8	91.0	82.9	89.6	95.0	97.9	70.6	83.9	91.7
sofa	82.7	91.3	89.9	89.5	95.8	99.7	94.2	86.5	97.6
tv_stand	73.6	85.9	88.6	92.1	90.9	97.4	76.6	82.5	96.0
wardrobe	62.7	88.7	91.7	79.4	92.1	97.0	70.0	81.1	94.2
Mean	64.3	84.8	85.5	83.6	90.1	94.3	73.3	81.6	94.7

MOPED Dataset

- 11 objects
- RGB-D video sequences with camera pose (from KinectFusion)
- Approximately 300 test images per object

Experiment & Results

• Experiment on MOPED (pose refinement)

Table 2. Quantitative Results on MOPED Dataset. We report the Area Under Curve (AUC) for each metric.

]	PoseRBPF	[<mark>6</mark>]	IBR-LD			IBR-D			IBR-L			
Input	Te.	xtured 3D	Mesh	Ima				ges + Camera Pose					
Training		Yes			No								
# Networks	Per-Object			Single Universal									
Pose Loss		-		$\mathcal{L}_{ ext{latent}} + \mathcal{L}_{ ext{depth}}$			$\mathcal{L}_{ ext{depth}}$			\mathcal{L}_{latent}			
	ADD	ADD-S	Proj.2D	ADD	ADD-S	Proj.2D	ADD	ADD ADD-S Proj.2D		ADD	ADD-S	Proj.2D	
black_drill	59.78	82.94	49.80	56.67	79.06	53.77	62.15	82.36	59.36	51.61	80.81	48.05	
cheezit	57.78	82.45	48.47	61.31	91.63	55.24	44.56	90.24	35.10	23.98	88.20	15.92	
duplo_dude	56.91	82.14	47.11	74.02	89.55	52.49	76.81	90.50	59.83	53.26	89.51	38.54	
duster	58.91	82.78	46.66	49.13	91.56	19.33	51.13	91.68	24.78	39.05	81.57	20.82	
graphics_card	59.13	83.20	49.85	80.71	91.25	67.71	79.33	90.90	60.35	60.11	87.91	41.92	
orange_drill	58.23	82.68	49.08	51.84	70.95	46.12	55.52	73.68	45.46	44.20	68.39	41.68	
pouch	57.74	82.16	49.01	60.43	89.60	49.80	58.51	89.15	44.40	22.03	82.94	20.19	
remote	56.87	82.04	48.06	55.38	94.80	37.73	63.18	94.96	45.27	62.39	91.58	41.96	
rinse_aid	57.74	82.53	48.13	65.63	92.58	28.61	67.09	93.66	27.62	57.54	87.44	19.00	
toy_plane	62.41	85.10	49.81	60.18	90.24	51.70	56.80	88.54	40.16	34.29	87.22	35.07	
vim_mug	58.09	82.38	48.08	30.11	80.76	14.38	49.89	77.79	32.85	27.49	78.59	10.51	
mean	58.51	82.76	48.55	58.67	87.45	43.35	60.45	87.59	43.20	43.27	84.01	30.33	

Experiment & Results

• Ablation:

- number of reference view
 - having more than 8 view yields marginal improvement.
- different view fusion strategy
 - CovGRU is better

Table 3. AUC metrics by number of reference views.

# Views	1	2	4	8	16	32
ADD	15.91	25.00	40.38	55.35	58.67	55.81
ADD-S	63.14	75.91	85.62	87.72	87.45	88.70
Proj.2D	8.68	15.43	28.41	38.87	43.35	38.45

Table 4. Effect of different View Fusion strategies

	ADD	ADD-S	Proj.2D
Avg Pool	56.78	88.04	39.82
ConvGRU	56.36	88.28	40.43

Refining 6D Object Pose Predictions using Abstract Render-and-Compare

Preliminary - Descriptor Learning

- Descriptor Learning
 - Learn feature vectors that can uniquely represent a point
 - Hope to have similar feature of the same point across frames
 - Reference: UCN, Super Point, GIFT
- Contrastive Loss
 - Encourage network to produce similar feature for positive samples and distinct feature for negative samples

$$\begin{split} \mathcal{L}_{\text{matches}}(I_a, I_b) &= \frac{1}{N_{\text{matches}}} \sum_{N_{\text{matches}}} D(I_a, u_a, I_b, u_b)^2 \\ \mathcal{L}_{\text{non-matches}}(I_a, I_b) &= \frac{1}{N_{\text{non-matches}}} \sum_{N_{\text{non-matches}}} max(0, M - D(I_a, u_a, I_b, u_b))^2 \\ \mathcal{L}(I_a, I_b) &= \mathcal{L}_{\text{matches}}(I_a, I_b) + \mathcal{L}_{\text{non-matches}}(I_a, I_b) \end{split}$$

Methodology

- Reconstruction
 - Train descriptor network by matching synthetic image to real image
 - Generate meta model: Synthetically generate reference view + Feature fusion
- Optimization
 - Render meta model onto the image with dense descriptor generated with real image and network.
 - Compare and optimize the pose.

Fig. 3. Learned surface features, projected and fused onto the mesh. The 3D feature vectors are visualized directly as RGB colors.

Experiment & Results

TABLE I

POSE REFINEMENT RESULTS ON THE YCB VIDEO DATASET

	PoseC	CNN [5]	PoseCNN refined (ours)		HeatM	Iaps [26]	HeatMap	DeepIM [16]				
Object	ADD	ADD-S	ADD(Δ) ADD-S(Δ)	ADD	ADD-S	ADD(Δ)ADD-S(Δ)	ADD	ADD-S
master_chef_can	50.2	83.9	63.3(+13.	1) 91.7(+7.8)	81.9	91.4	76.7(-5.1) 90.2(-1.2)	65.2	87.8
cracker_box	53.1	76.9	65.3(+12.	2) 81.7(+4.9)	83.6	90.0	82.9(-0.7) 89.4(-0.6)	82.6	89.8
sugar_box	68.4	84.2	85.3(+16.)	9) 92.0(+7.8)	82.1	89.8	86.4(+4.3) 92.2(+2.4)	89.7	93.8
tomato_soup_can	66.2	81.0	59.4(-6 .	8) 79.9(-1.1)	79.8	89.5	57.4(-22.4)) 78.2(-	-11.3)	81.4	90.1
mustard_bottle	81.0	90.4	86.5(+5.	5) 92.3(+1.9)	91.5	95.0	86.7(-4.7) 92.6(-2.4)	90.3	94.4
tuna_fish_can	70.7	88.0	81.1(+10.	4) 94.3(+6.3)	48.7	71.7	69.7(+21.0)) 85.7(+	-14.0)	85.4	94.5
pudding_box	62.7	79.1	71.1(+8.	4) 83.1(+4.1)	90.2	94.1	68.8(-21.4) 80.7(-	-13.4)	84.9	91.8
gelatin_box	75.2	87.2	81.5(+6.	3) 89.1(+1.9)	93.7	95.9	73.0(-20.7)) 82.8(-	-13.1)	87.7	91.6
potted_meat_can	59.5	78.5	63.7(+4.	2) 80.3(+1.8)	79.1	90.0	74.6(-4.5) 87.6(-2.4)	70.0	78.2
banana	72.3	86.0	82.1(+9.	8) 91.8(+5.8)	51.7	67.8	68.8(+17.1) 81.0(+	-13.2)	83.3	92.0
pitcher_base	53.3	77.0	85.1(+31.	8) 92.7(-	+15.7)	69.4	85.0	83.8(+14.4) 92.1(+7.1)	88.7	93.7
bleach_cleanser	50.3	71.6	65.0(+14.	7) 80.4(+8.9)	76.2	85.5	78.3(+2.0) 87.6(+2.2)	75.9	86.8
bowl	3.3	69.6	6.5(+3.)	1) 75.5(+5.9)	3.6	78.1	1.5(-2.1)) 66.4(-	-11.6)	41.5	77.8
mug	58.5	78.2	65.9(+7.	4) 84.0(+5.9)	53.9	75.8	57.9(+4.0) 78.9(+3.1)	70.3	86.1
power_drill	55.3	72.7	73.7(+18.	4) 85.9(-	+13.2)	82.9	90.8	81.5(-1.3) 90.4(-0.4)	90.7	94.6
wood_block	26.6	64.3	45.5(+18.	9) 73.3(+9.0)	0.0	57.0	0.0(+0.0) 60.3(+3.3)	26.2	60.1
scissors	35.8	56.9	40.0(+4.	1) 58.6(+1.7)	65.3	79.6	75.4(+10.1)) 85.4(+5.8)	45.5	61.8
large_marker	58.3	71.7	63.9(+5.	6) 77.3(+5.6)	56.5	70.2	59.8(+3.3) 70.2(+0.0)	68.1	77.5
large_clamp	24.6	50.2	37.0(+12.	4) 65.1(-	+15.0)	57.2	73.1	75.3(+18.1)) 85.6(+	-12.5)	45.5	72.1
extra_large_clamp	16.1	44.1	25.4(+9.)	3) 63.7(-	+19.6)	23.6	54.6	20.4(-3.1)) 58.3(+3.7)	29.1	70.0
foam_brick	40.2	88.0	43.3(+3.	1) 90.8(+2.8)	32.1	88.9	37.0(+5.0) 92.1(+3.2)	70.5	83.0
ALL	53.7	75.8	62.8(+9.	1) 82.4(+6.6)	66.2	82.4	67.0(+0.7) 83.5(+1.1)	70.1	84.2

We report the area under the accuracy curve (AUC) for varying error thresholds on the ADD and ADD-S metrics.